If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-200x-455=0
a = 9; b = -200; c = -455;
Δ = b2-4ac
Δ = -2002-4·9·(-455)
Δ = 56380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56380}=\sqrt{4*14095}=\sqrt{4}*\sqrt{14095}=2\sqrt{14095}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-2\sqrt{14095}}{2*9}=\frac{200-2\sqrt{14095}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+2\sqrt{14095}}{2*9}=\frac{200+2\sqrt{14095}}{18} $
| 1/x+10-4=3x-4/x+10 | | 14x=18x | | 4x/5=-12/10 | | x+2x+3x=99 | | .10x+.25(70)=25.5 | | X+3x=5x+8 | | (X-C1)^2+y^2=C^2 | | (X-C1)^2+y^2=C^2=C2 | | 3x-2=4(x-1)=2x | | 5p+5+5p=21 | | 4x^2+33x-1960=0 | | 4x^2+34x-1960=0 | | 2x^2+17x-980=0 | | 2x^2+17x+880=0 | | 2x^2+17x-880=0 | | 3x+1-x+7=0 | | 4m-6+2m=+5 | | 24=-7v+5(v+2) | | 5x-3=3(x | | 7p+7+9p=-21 | | -6(x+2)-15=10+5 | | 5a=18 | | -20+18=m-4 | | 5x-3=(x+7)+3x4 | | 3x-2=4(x-1)+2x= | | |3x−5|+6=25 | | 5/7t+14=-11 | | 2x^2+50x-7900=0 | | 7^-8y=9 | | n–27.3=15.9 | | 5x^2+5=55 | | 3x+10=5x-5. |